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LETTER TO THE EDITOR 

Fluctuation effects on microphase separation in a random 
copolymer Hamiltonian 

C D Sfatos, A M Gutin and E I Shakhnovich 
Harvard University, Depamnent of Chemisq. I2 Oxford Sfreef. Cambridge MA 02138, USA 

Received 8 April 1994 

Abshaad We investigate the effect of fluctuations in the effective Hamillonian that describes 
tbe microphase separation in random copolymers. This Hamiltonian b previously studied on 
the level of mean-field theory where a phase transition to a phase with periodic microdomain 
sbucnue was predicted. It is shown here tha the one-lwp " e n t  of Auch~ations is exact 
in the thermodynamic limit and that the phase. predicted by mean field is unstable within the 
framework of the studied Hamiltonian. 

We study the effect of fluctuations in the effective Hamiltonian that describes a random 
copolymer sequence, where each monomer along the sequence can be randomly of kind 
A or B and similar kinds of monomers attract each other. The mean-field study of these 
systems showed [l-31 that they undergo a temperature induced phase separation msi t ion  
to a non-uniform phase. The transition from the disordered to the ordered phase has been 
predicted to be third order. A first attempt to describe this transition beyond mean field [4] 
showed that, on the level of the oneloop approximation, fluctuations make the disordered 
phase locally stable at any temperature T > 0. It was then argued that the transition takes 
place through a first-order mechanism similar to the weak crystallization transition to a 
non-uniform phase investigated by Brazovskii [5-71. 

We perform here an exact treatmetit of fluctuations for this effective Hamiltonian. We 
show that fluctuations not only make the disordered state locally stable at any temperature 
T 0, but also destabilize the ordered phase. This result holds m e  in any dimension. 

The microphase separation transition is described by the order parameter [8] 

m(R) = P A @ )  - P E @ )  (1) 

where pA(R) ,  p s ( R )  are the densities of monomer kinds A, B respectively. The effective 
Hamiltonian for the random copolymer is [l] 

where V is the volume and the Fourier transfonn of the order parameter is defined as 
m(k) = ( l / f l )  Jm(R)e'k'RdR. The Hamiltonian (2) refers to the polymeric chain with 
an qua t  amount of A and B kinds of monomers so that lm(R)dR = 0. The fourth- 
order vertex is due entirely to the heteropolymeric entropy. The coefficient A is inversely 
proportional to the square of the polymeric bond length. 
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We see that the important features of this vertex are the strong momentum dependence 
and the pairing of momenta. The polymeric fourth-order term suppresses phase separation 
with long wavelengths. On the other band short wavelength modes are suppressed by the 
surface tension contribution to the second-order term. It was shown [I] that the mean-field 
solution can be taken in the form 

m(k) = m o m ( A ( k  - ko) + A(k + 4)) (3) 

where A is Kronecker's delta. This solution corresponds to the lamelar phase. The mean- 
field amplitude mo and the frequency 4 can be determined by minimization of (2) to 
be 

.t z 
mo = -- J = -- for t i 0. 

3 4 I  3 (4) 

Therefore, the mean-field theory predicts a continuous phase transition at 7 = 0. 
Shortly after the derivation of this Hamiltonian it was observed [4] that a renormalization 

of the Green function on the one-loop level changes its form qualitatively. The one-loop 
Dyson equation for the Green function, G(k) is 

By substituting even the bare Green function into the integral of (5) for t > 0, the 
renomalizd Green function in three dimensions becomes 

with k = Ikl. We see immediately that there is a minimum of G-'(k)  at some IC,  # 0. It 
was, therefore, proposed that the form of the renormalized Green function can be described 
by the form used in weak crystallization theory 

G-'(IC) = C(k - k.)2 + r. (7) 

This approximation is good for r <<IC:. By substitution of this into (5) it was found that 

According to the first relation in ( S ) ,  the renormalized mass r ,  cannot become zero except 
for I = -m which corresponds to T = 0. Therefore the disordered phase never loses 
stability as in the Brazovskii theory. This result is quite general and is due to the fact that 
the integral corresponding to the one-loop correction, 

(9) 

is divergent as r -+ 0 for every dimensionality. On the basis of this evidence it was assumed 
[4] that this system will have a first-order transition of the Brazovskii type. A more careful 
study, however, is to be carried out in what follows. 

dd ki / (ICz + k:)[(k, - k d 2  + rl 
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(4 (6)  

Figure l. One-loop (a) and two-loop (b)  Feynman diagram contribution to the self-energy. 

Consider the diagrams that contribute to a perturbation expansion. The contribution of 
the one-loop diagram shown in figure l(a) to the Dyson equation is of order 

The two-loop diagram shown in figure I(&) is of order 

and therefore should be neglected in the thermodynamic limit. We can easily see that all 
higher loops diagrams do not contribute for the same reasons. 

From the above remark we conclude that the one-loop Dyson equation given in (5) is 
exact and the lack of continuous transition for the effective Hamiltonian (2) is a general 
result that does not depend on the smallness of the parameter A. This is a first impoitant 
difference between the results of Hamiltonian (2) and the Brazovskii theory. 

On the premises discussed above, we calculate here the stability of the ordered phase. 
If we assume that the symmetry is broken as described by (3) we need to write down the 
free energy functional l.I[mo, ko: $1. The order parameter is 

for k = &lco 
for k # fh 

m(k) = 

Fluctuations of the mode k = ko are of order 1 and are ignored compared to the mean- 
field m(k) - fi. Fluctuations to other modes are denoted by $. Then the free energy 
functional becomes 

where 'H{mo, ko) is the value of the Hamiltonian (2) if we substitute the mean 
in the form given by (3). 

thermodynamic relations 

olution 

The classical field values mo. ko are found from the equation of state given by the 
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k 

Figure X Numerical so1ution of the Dyson equation (5)  for C" in the disordered phase, 

The first equation reads 

where {@(k)@(-k)) = G(k).  The Dyson equation for the ordered phase for k # is 

This equation is exact since higher-loop diagrams are subdominant in V due to the peculiai 
synunehy of our vertex. 

Then, by comparison of (15) and (16) we see that G(k)  depends only on the modulus 
k and 

G-'(k&no = 0. (17) 
The minimum value of G-'(k) is positive since, if G-' = 0, the integral of (16) diverges. 
Then G-'(ko) z 0 and therefore, according to (17), mo = 0. We see that we cannot have 
a stable solution with mo # 0 and rC, # 0, due to the divergence of the integral (9) in any 
dimension. 

The Dyson equation (5) can be solved numerically. The solution for G-'(k) taking 
A = (2xj3/4 is shown in figure 2 at 5 = -5.0 and the dependence on r of the minimum 
value r of G-' and of the mode k. that corresponds to this minimum is plotted in figure 3. 
We see from figure 2 that the approximation proposed in (7) is good around the minimum. 
The behaviour of the real space correlatipn function can be obtained with Fourier transform 
of (7), from which we get 

e--JiR 
(m(R)m(O)) - - J7R k* sin(k.R) (18) 

where R is the modulus of the distance vector. This is a decaying oscillation with period k;' 
and relaxation length r-'I2. We see from figure 3 that as r becomes negative, r decreases 
towards zero where k, increases and becomes larger than r. Then we can have several 
periods before the decay, signifying some local periodic structure. 
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Figure 3. Dependence an T of the minimum value I of G-' and of the mode modulus k. t h l  
corresponds to this minimum 

The peculiar symmetry of the fourth-order vertex of (2 )  with pairing of momenta allowed 
for the exact treatment of fluctuations on the one-loop level as opposed to the effect of 
fluctuations due to the Ising model interaction term. According to the above analysis we 
conclude that every effective Hamiltonian which has a fourth-order vertex with integration 
over pairs of momenta as in (2) will not allow the transition to a non-uniform (Lo # 0) 
phase with spontaneously broken symmetry. Previous studies 19,101 did not reveal the 
simplifications of the fluctuation treatment allowed by this pairing symmetry of the vertex 
in (2). 

However, for the heteropolymer problem, the strong result given in (17) only implies that 
the mean-field conclusion based on the Hamiltonian (2) that predicts a micropbase separation 
transition is wrong. The complete heteropolymer problem needs to be reconsidered in a 
different basis since other terms of the full Hamiltonian have been omitted because they 
are not important in the mean-field. More specifically, the regular king model fourth-order 
vertex 

which appears in the entropy part of the L&dau expansion for the phase separation of a 
non-polymeric b i m y  system. This term has been neglected in mean-field because near 
transition IC0 is very small and, therefore, the heteropolymeric vertex considered in (2) 
dominates in mean-field. A thorough consideration of the full Hamiltonian will be given 
elsewhere [ll]. 

This work was supported by the David and Lucille Packard Fund. The authors would l i e  
to thank A V Dobrynin and I Ya Erukbimovich for motivating discussions. 
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